АГРОЭКОЛОГИЯ

ВЛИЯНИЕ МЕТЕОРОЛОГИЧЕСКИХ УСЛОВИЙ ЗИМНЕ-ВЕСЕННЕГО ПЕРИОДА ГОДА НА ВЫХОД ПРИВИТЫХ САЖЕНЦЕВ ПЕРСИКА В ПЛОДОВОМ ПИТОМНИКЕ

О.Е. КЛИМЕНКО, Н.И. КЛИМЕНКО,

кандидаты сельскохозяйственных наук Никитский ботанический сад – Национальный научный центр

Введение

В последние годы в Крыму значительно возросла потребность в посадочном материале плодовых культур, особенно таких, как персик и алыча, которые рано вступают в плодоношение и отличаются высокой урожайностью и качеством плодов.

Выращивание саженцев персика в плодовом питомнике приносит значительный экономический эффект. Однако в условиях степного Крыма нередко выход саженцев снижается из-за неблагоприятных погодных условий перезимовки семян, сеянцев и заокулированных почек. Это связано с тем, что почки персика рано выходят из периода покоя и могут повреждаться возвратными зимними холодами после продолжительных оттепелей и поздними весенними заморозками [4].

Общее количество выращенных на гектаре сеянцев для окулировки и привитых саженцев может колебаться по годам в значительных пределах [6]. При одинаковой агротехнике такая разница определяется в основном метеорологическими условиями года. Для правильного планирования затрат и прогноза общего выхода саженцев с гектара необходимо знать, как зависят эти производственные показатели от погодных условий.

В связи с этим целью нашей работы было изучение влияния неблагоприятных погодных условий зимне-весеннего периода на важные в питомниководстве показатели развития сеянцев и саженцев, а также выход стандартных сеянцев миндаля и привитых саженцев персика в плодовом питомнике.

Объекты и методы

Производство однолетних саженцев персика имеет двухлетний цикл. В первый год выращивают сеянцы миндаля, на которых летом окулируют различные сорта персика (первое поле). На следующий год из заокулированных почек сформируются саженцы (второе поле). Осенью саженцы выкапывают и реализуют. Объектами наших исследований были горькосемянные формы миндаля обыкновенного (Amygdalus communis L.) и саженцы персика (Persica vulgaris Mill.) сорта Фаворита Мореттини, которые выращивали в питомнике Никитского ботанического сада - Национального научного центра. Питомник располагается в степной части Крыма (25 км к северу от города Симферополь, АР Крым). Выращивание саженцев велось по принятой для данной климатической зоны агротехнике [5]. Питомник орошаемый. Влажность почвы поддерживали на уровне 70-80 % НВ.

В питомнике учитывали всхожесть семян миндаля, количество сеянцев миндаля, пригодных к окулировке в первый год выращивания, а также приживаемость почек персика и выход саженцев, в том числе стандартных (соответственно требованиям отраслевого стандарта) и методике изучения подвоев [2, 3].

Метеорологические данные были получены на ведомственной метеостанции, находящейся в непосредственной близости от полей севооборота питомника. Негативное влияние на важные в питомниководстве показатели роста и состояния саженцев, которое нельзя было корректировать агротехникой, оказывали

неблагоприятные условия холодного периода года. В связи с этим в исследование были включены данные среднемесячной и абсолютной минимальной температуры воздуха и поверхности почвы зимних и весенних месяцев с декабря по апрель. Исследования проводили в 2004-2010 годах. Статистическую обработку данных производили на ПК с использованием программы Statistica 06.

Результаты и обсуждение

В системе агроклиматического районирования Крыма территория, где находится питомник, относится к центральному равнинно-степному району с засушливым климатом, умеренно-жарким вегетационным периодом и мягкой неустойчивой зимой. Средний из абсолютных годовых минимумов температуры воздуха составляет -17...-23°С. Абсолютный минимум достигает -26...-32°С [1]. Поздние весенние заморозки наблюдаются в основном в конце апреля - начале мая, они возможны один раз в четыре года. При этом во время последнего весеннего заморозка температура в 40 % лет снижается до -2...-5°С, что может привести к повреждению как проростков миндаля, так и распускающихся почек окулянтов персика.

В зимнее время нередки повышения температуры до положительных значений. Средний максимум ее в январе составляет 2,9°С, абсолютный 20°С. То есть в наиболее холодный период зимы нередки оттепели, провоцирующие преждевременное начало вегетации [1].

Среднегодовая температура поверхности почвы была на 2.5° С выше, а в январе – на 0.4° ниже температуры воздуха. В апреле, когда появляются всходы миндаля и начинается развитие окулянтов, в 90 % лет наблюдений температура на поверхности почвы падала в отдельные дни до отрицательной, иногда очень значительной. Один раз в 5 лет возможно снижение температуры на поверхности почвы от -0° С до -4° С даже в мае [1].

Метеорологические данные конкретных лет наблюдений показывают (табл. 1), что за пять полных лет исследования наиболее холодным был январь 2006 года, когда среднемесячная температура воздуха составила -5,5°C, а абсолютный минимум достигал -25,6°C. В январе 2010 года также отмечалась довольно низкая абсолютная минимальная температура -21,1 °C.

Таблица 1 Температуры воздуха и поверхности почвы в зимне-весенний период роста

температуры воздуха и поверхности почвы в зимне-весеннии период роста							
	Декабрь	Январь	Февраль	Март	Апрель	Последни й	
Год	Средняя	заморозок в воздухе, -о С (дата)					
1	2	3	4	5	6	7	
2004-2005	3,4/-12,1*	3,1/-7,6	0,8/-16,2	2,0/-10,6	10,3/-6,6	-2,4 (8,04)	
	3/-13**	3/-9	1/-20	4/-12	14/-9	-1 (25,04)	
2005-2006	3,7/-12,7	-5,5/-25,6	-0,8/-18,4	5,5/-10,0	10,0/0	-0,6 (27,03)	
	3/-16	-5/-27	0/-15	7/-13	14/-4	-1 (30,04)	

П		_	1
Hipo	лолжение	таолины	- 1

продолжение гаолицы г						
1	2	3	4	5	6	7
2006-2007	2,9/-12,6	4,8/-10,3	0,9/-19,1	5,6/-4,5	8,3/-1,0	-0,2 (3,05)
	2/-14	4/-8	0,8/-25	7/-6	12,2/-3	-3 (3,05)
2007-2008	1,6/-6,7	-3,6/-16,9	0,8/-16,0	7,6/-2,6	11,2/1,3	-0,1 (8,05)
	2/-5	-3/-17	1/-16	9/-5	15/-1	0 (6,05)
2008-2009	2,2/-11,5	0,6/-16,0	3,4/-6,8	5,2/-7,0	8,9/-3,8	-2,1 (24,04)
	2/-15	-1/-19	4/-8	6/-10	13/-6	-1 (26,04)
2009-2010	4,4/-7,6	-0,2/-21,1	2,4/-14,0	4,3/-10,0	9,8/-0,9	-0,9 (28,04)
	4/-8	0/-21	2/-16	6/-8	13/-3	-3 (29,04)

^{* –} температура воздуха, средняя/минимальная ** – температура поверхности почвы, средняя/минимальная.

Абсолютный минимум температуры в феврале был самым низким в 2007 году – -19,1°С. Наиболее холодным был март 2005 года, когда средняя температура воздуха составила всего 2°С, а абсолютный минимум достиг -10,6°С. Температура поверхности почвы в исследуемый период года, как правило, была ниже, чем температуры воздуха. Наиболее низкая температура воздуха зафиксирована в январе 2006 года и составила - 27°С (табл. 1). Последние весенние заморозки в период исследований наблюдались в основном в конце апреля — начале мая, температура их колебалась от -0,1°С 8 мая 2008 года до -2,4°С 8 апреля 2005 года. На поверхности почвы последний заморозок в этом году наблюдался 25 апреля. Все это могло неблагоприятно сказаться на количестве всходов миндаля и сохранности почек персика после перезимовки.

Наблюдения за растениями в питомнике показывают, что всхожесть семян миндаля колебалась в широких пределах в зависимости от года (табл. 2). Наиболее низкой она была в 2006 и 2009 годах. Максимальной всхожесть семян была в 2008 году, когда температурные условия зимне-весеннего периода были благоприятными для прорастающих семян. Статистический анализ показал, что всхожесть семян была достоверно связана с абсолютной минимальной температурой поверхности почвы в декабре (r = 0.93, n = 6).

Число подвоев, подошедших к окулировке, было минимальным в 2008 и 2009 годах (табл. 2). Этот показатель связан достоверной прямой зависимостью со средней температурой воздуха в декабре (r = 0.87, n = 6).

Количество живых почек персика после перезимовки (по результатам весенней ревизии) значительно колебалось по годам и зависело от числа заокулированных растений (r = 0.97, n = 5). Корреляционный анализ показал очень тесную достоверную обратную зависимость количества живых глазков персика от средней температуры воздуха в феврале (r = -0.94, n = 5). То есть чем холоднее был февраль, тем лучше была сохранность окулянтов.

2010 1.1.							
Γ. –	Взошло семян	Подошло к окулиров-ке	Число живых почек персика	Всего сажен цев	Стандарт сажент		
Год		% от числа по	% от всех саженцев	Тыс. шт. с 1 га			
2005-2006	77,0	74,0	64,8	62,0	74,0	43,6	
2006-2007	70,4	64,8	53,1	40,8	44,1	17,1	
2007-2008	72,8	65,1	59,2	57,9	78,8	43,3	
2008-2009	90,1	55,9	44,5	43,8	91,2	37,9	
2009-2010	66,7	55,7	42,8	42,2	73,7	29,5	
Спелнее	75.4	63.1	52.9	49 3	72 4	34 3	

Таблица 2 Состояние сеянцев миндаля и саженцев персика в питомнике НБС-ННЦ в 2005-

Общее число саженцев, полученных с гектара, было максимальным в 2006 и 2008 годах (табл. 2). В остальные годы выход саженцев был на уровне 40 % от числа посеянных семян. Установлена очень тесная достоверная отрицательная зависимость между выходом саженцев и средней температурой воздуха и почвы в январе (г = -0,91 и -0,88 соответственно, п = 5). Обнаружена также достоверная положительная зависимость общего выхода саженцев от суммы отрицательных зимних температур (г = 0,93, n = 5). Следовательно, чем ниже была средняя температура января, тем большим был выход саженцев. Это может быть связано с отсутствием преждевременного пробуждения привитых почек персика. Однако чем холоднее была зима, тем меньше был выход саженцев персика. Это говорит о необходимости агротехнических мероприятий, повышающих зимостойкость растений.

Число стандартных саженцев персика, выраженное в процентах от их общего числа, было подвержено еще большим колебаниям в зависимости от года, чем их общий выход, и составило от 44 до 91 %. Этот показатель мало зависел от метеорологических условий конкретного года и, скорее всего, определялся условиями ухода за саженцами (внесение удобрений, прореживание, прополки и т.д.). Количество стандартных саженцев (тысяч штук с гектара) было самым большим в 2006 и 2008 годах, самое низкое их число отмечено в 2007 году (табл. 2).

Корреляционный анализ данных показал, что число стандартных саженцев персика сорта Фаворита Мореттини, также как и общий выход сажениев, достоверно связано со средней температурой почвы в январе при перезимовке глазков (г = - 0,96, п = 5). Положительная тесная достоверная зависимость установлена между числом стандартных саженцев и температурой последнего весеннего заморозка на поверхности почвы при перезимовке окулянтов (r = 0.88, n = 5). То есть окулянты лучше переносили низкие температуры в январе, чем поздние весенние заморозки.

Уравнения множественной регрессии показывают зависимости числа живых почек после перезимовки и общего числа саженцев персика, полученных в питомнике, от температурных условий зимне-весеннего периода второго года выращивания:

 Y_1 число живых глазков персика (% от посеянных семян) = 1.4 x1 + 07 x₂ + °.1x₃ Y_2 всего саженцев (% от посеянных семян) = 0.04 x₄ + 3.9 x₅ + 0.2 x₆ - 21.9,

где x_1 – число заокулированных растений (в % от числа посеянных семян); x_2 – абсолютный минимум температуры, o C; x_3 – средняя температура почвы в марте, o C; x_4 - сумма отрицательных температур, $^{\circ}$ C; x_5 - средняя температура на поверхности почвы в апреле, ° С; х6 – число живых почек после перезимовки, % от числа посеянных семян.

Коэффициенты детерминации (R) этих уравнений равны 0,999. Это значит, что указанные в них параметры на 99,9 % определяют число живых почек после перезимовки и общий выход саженцев персика. Зная температуры зимне-весеннего периода второго года выращивания, можно с высокой степенью достоверности прогнозировать число живых почек после перезимовки и общий выход саженцев персика.

Выводы

В условиях степного Крыма количество саженцев персика, выращенное в питомнике, зависит от метеорологических условий зимне-весеннего периода. Ограничивающими факторами в первый год выращивания являются абсолютная минимальная температура поверхности почвы и средняя температура воздуха в декабре, во второй год - средние температуры поверхности почвы и воздуха в январе, феврале и апреле, а также температура последнего весеннего заморозка на поверхности почвы.

Рассчитаны уравнения множественной регрессии, с помощью которых с высокой вероятностью можно прогнозировать число прижившихся глазков и общий выход саженцев персика. Число стандартных саженцев будет определяться скорее уровнем агротехники, чем погодными условиями. Прогнозы будут более достоверными при высоком уровне агротехники в питомнике.

Список литературы

- 1. Антюфеев В.В., Важов В.И., Рябов В.А. Справочник по климату Степного отделения Никитского ботанического сада. Ялта: НБС-ННЦ, 2002. 89 с.
- 2. Бублик М.О. Методологічні та технологічні основи підвищення продуктивності сучасного садівництва. К.: Нора-Друк, 2005. 288 с.
- 3. Методика изучения подвоев плодовых культур в Украинской ССР / Под ред. М.В. Андриенко и И.П. Гулько. Киев, 1990. 104 с.
- 4. Методические рекомендации по районированию природных условий Крыма для целей садоводства / Сост. Важов В.И., Иванов В.Ф., Косых С.А. Ялта: ГНБС, 1986.-41 с.
- 5. Татаринов А.Н., Зуев В.Ф. Питомник плодовых и ягодных культур. М.: Россельхозиздат, 1984. 270 с.
- 6. Ядров А.А., Ярошенко Б.А. Выращивание посадочного материала питомником степного отделения Никитского сада // Изучение и внедрение в производство новых сортов плодовых, декоративных и технических растений: Труды Гос. Никитск. Бот. сада. Ялта: ГНБС. 1977. Т. 72. С. 58-65.

Рекомендовано к печати д.б.н. Шоферистовым Е.П.